Single-Stranded DNA Uptake during Gonococcal Transformation.
نویسندگان
چکیده
UNLABELLED Neisseria gonorrhoeae is naturally competent for transformation. The first step of the transformation process is the uptake of DNA from the environment into the cell. This transport step is driven by a powerful molecular machine. Here, we addressed the question whether this machine imports single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) at similar rates. The fluorescence signal associated with the uptake of short DNA fragments labeled with a single fluorescent marker molecule was quantified. We found that ssDNA with a double-stranded DNA uptake sequence (DUS) was taken up with a similar efficiency as dsDNA. Imported ssDNA was degraded rapidly, and the thermonuclease Nuc was required for degradation. In a nuc deletion background, dsDNA and ssDNA with a double-stranded DUS were imported and used as the substrates for transformation, whereas the import and transformation efficiencies of ssDNA with single-stranded DUS were below the detection limits. We conclude that the DNA uptake machine requires a double-stranded DUS for efficient DNA recognition and transports ssDNA and dsDNA with comparable efficiencies. IMPORTANCE Bacterial transformation enables bacteria to exchange genetic information. It can speed up adaptive evolution and enhances the potential of DNA repair. The transport of DNA through the outer membrane is the first step of transformation in Gram-negative species. It is driven by a powerful molecular machine whose mechanism remains elusive. Here, we show for Neisseria gonorrhoeae that the machine transports single- and double-stranded DNA at comparable rates, provided that the species-specific DNA uptake sequence is double stranded. Moreover, we found that single-stranded DNA taken up into the periplasm is rapidly degraded by the thermonuclease Nuc. We conclude that the secondary structure of transforming DNA is important for the recognition of self DNA but not for the process of transport through the outer membrane.
منابع مشابه
Formation of single-stranded DNA during DNA transformation of Neisseria gonorrhoeae.
Neisseria gonorrhoeae is naturally competent for DNA transformation. In contrast to other natural prokaryotic DNA transformation systems, single-stranded donor DNA (ssDNA) has not previously been detected during transformation of N. gonorrhoeae. We have reassessed the physical nature of gonococcal transforming DNA by using a sensitive nondenaturing native blotting technique that detects ssDNA. ...
متن کاملDNA-binding proteins in cells and membrane blebs of Neisseria gonorrhoeae.
Naturally elaborated membrane bleb fractions BI and BII of Neisseria gonorrhoeae contain both linear and circular DNAs. Because little is known about the interactions between DNA and blebs, studies were initiated to identify specific proteins that bind DNA in elaborated membrane blebs. Western immunoblots of whole-cell and bleb proteins from transformation-competent and DNA-uptake-deficient (du...
متن کاملSingle-stranded regions in transforming deoxyribonucleic acid after uptake by competent Haemophilus influenzae.
About 15% of donor deoxyribonucleic acid (DNA) is single stranded immediately after uptake into competent Haemophilus influenzae wild-type cells, as judged by its sensitivity to S1 endonuclease. This amount decreases to 4 to 5% by 30 min after uptake. Mutants which are defective in the covalent association of recipient and donor DNA form little or no S1 endonuclease-sensitive donor. At 17 C don...
متن کاملInsertion-duplication mutagenesis of neisseria: use in characterization of DNA transfer genes in the gonococcal genetic island.
We created plasmids for use in insertion-duplication mutagenesis (IDM) of Neisseria gonorrhoeae. This mutagenesis method has the advantage that it requires only a single cloning step prior to transformation into gonococci. Chromosomal DNA cloned into the plasmid directs insertion into the chromosome at the site of homology by a single-crossover (Campbell-type) recombination event. Two of the ve...
متن کاملMidcell Recruitment of the DNA Uptake and Virulence Nuclease, EndA, for Pneumococcal Transformation
Genetic transformation, in which cells internalize exogenous DNA and integrate it into their chromosome, is widespread in the bacterial kingdom. It involves a specialized membrane-associated machinery for binding double-stranded (ds) DNA and uptake of single-stranded (ss) fragments. In the human pathogen Streptococcus pneumoniae, this machinery is specifically assembled at competence. The EndA ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 198 18 شماره
صفحات -
تاریخ انتشار 2016